Journal of Organometallic Chemistry, 240 (1982) 363-369 Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

CARBONYLNIOBIUM CHEMISTRY

III *. TRICARBONYL- η^5 -CYCLOPENTADIENYLHYDRIDONIOBATE(-I): PREPARATION AND ⁹³Nb NMR SPECTROSCOPIC INVESTIGATION OF [Et₄N][CpNb(H)(CO)₃] AND [Et₄N][CpNb(D)(CO)₃]

FRITZ NAUMANN, DIETER REHDER * and VOLKER PANK

Institut für Anorganische Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2 Hamburg 13 (F.R.G.)

(Received July 19th, 1982)

Summary

The complexes $[Et_4N][CpNb(X)(CO)_3]$ (X = H, D) have been prepared by reduction of CpNb(CO)₄ in THF and subsequent treatment with CX₃CN/[Et₄N]Cl. There is IR-spectroscopic evidence for the formation of an intermediate $[CpNb(CO)_3]^{2-}$. The isotope effect (¹H, ²H) on the ⁹³Nb shielding (6 ppm) and the temperature dependencies of δ (⁹³Nb) (0.25 ppm/deg) and the line widths are discussed.

Introduction

We have recently shown that $[CpV(CO)_3]^{2-}$, obtained by the reduction of $CpV(CO)_4$ in THF [1], liquid NH₃ [2] or HMPA [3] is converted to the hydrido complex $[CpV(H)(CO)_3]^-$ in the presence of acetonitrile [4]. This anion, which can be stabilized by precipitation with $[Et_4N]^+$, was also obtained by Bergman and co-workers by reaction of Na₂[CpV(CO)₃] with H₂O/THF [5]. Bergman has extensively studied the chemistry of this anionic hydridovanadium species [5,6].

Results and discussion

We have now successfully applied our method for the preparation of $[Et_4N][CpNb(X)(CO)_3]$, where X = H or D. The complexes are formed according to equation 1.

^{*} See ref. 20 for communication II.

$$CpNb(CO)_{4} \xrightarrow{Na/Hg}_{THF} [CpNb(CO)_{3}]^{2} \xrightarrow{CX_{3}CN} [CpNb(X)(CO)_{3}]^{-}$$
(1)

It appears that the niobium centre in the dianion is more basic than the vanadium centre in the analogous vanadium complex, i.e. the intermediate Na₂[CpNb(CO)₃] cannot be isolated in pure form. There are, however, absorptions in the CO stretching region which clearly indicate that this yet unknown anion is formed (Table 1). Two additional bands at 1850 and 1812 cm⁻¹, which appear after 10 min of reduction and slowly dissappear in the course of the reaction, may be attributed to a hydrido-bridged species [{CpNb(CO)₃} $_{2}\mu$ -H]⁻ by analogy with a corresponding vanadium complex suggested by Bergman [5] and Jones [10] (cf. Table 1). The complete conversion into the hydrido complex is readily brought about by addition of a solution of [Et₄N]Cl in acetonitrile.

If the reaction is carried out in TDF and CD_3CN , an approximate 1/1 mixture of $[CpNb(H)(CO)_3]^-$ and $[CpNb(D)(CO)_3]^-$ is obtained, which is stable in its composition at room temperature. If the CD_3CN solution is kept at elevated temperatures (320 K and more), the H⁻ ligand is progressively replaced by D⁻. The H/D exchange is revealed by the ⁹³Nb NMR spectra (Fig. 1). Similarily, a solution of $[CpNb(H)(CO)_3]^-$ in CD_3CN is stable below 305 K in absolutely dry CD_3CN , but immediate conversion to the deuterido complex occurs (even at room temperature), if small amounts (ca. 1%) of D₂O are added. This exchange does not take place in a solution of $[CpNb(H)(CO)_3]^-$ in $CH_3CN + ca. 1\% D_2O$.

The formation of considerable amounts of $[CpNb(H)(CO)_3]^-$ during the reaction in deuterated solvents suggests that hydrogen reacts more readily than deuterium. This observation can be accounted for in terms of H⁺ being the more electrophilic agent, or by kinetic considerations (i.e. a greater mobility of H⁺ as compared to D⁺ and/or a sterically reduced tendency for the niobium centre to ligate the larger D). Since there is no exchange of H for D at room temperature in the absence of D₂O, hydrogen transfer to $[CpNb(CO)_3]^{2-}$ is probably achieved by direct reaction between $[CpNb(CO)_3]^{2-}$ and CX₃CN rather than by interaction of (catalytically acting) proton-active impurities such as X₂O.

On the other hand, H^- is easily replaced by D^- at elevated temperatures in dry deutero-acetonitrile, or at room temperature in the presence of D_2O . Since the D_2O -induced conversion of $[CpNb(H)(CO)_3]^-$ to $[CpNb(D)(CO)_3]^-$ does not occur in CH_3CN , the position of the exchange equilibrium is obviously dependent upon the overall H/D ratio, showing that there is no pronounced preference for the bonding of either the H^- or the D^- ligand once the basicity of the metal center is reduced by the attachment of hydrogen.

The overall NMR results are summarized in Table 1 together with IR and NMR data on vanadium complexes of the general formula $[CpV(Y)(CO)_3]^-$. Figure 2 is a graphical presentation of the temperature dependencies of the ⁹³Nb chemical shift values, $\delta(^{93}Nb)$ and the half-widths of the NMR signals, $\Delta \nu_{1/2}$. The smooth curves indicate that temperature-dependent exchange equilibria between different Nb species can be excluded. The temperature gradient for $\delta(^{93}Nb)$, 0.25 ppm/deg is somewhat smaller than that for CpNb(CO)₄ (0.38 ppm/deg [11]). In accord with theory, shielding of the ⁹³Nb nucleus decreases as the temperature increases. The considerable broadening of the resonances at low temperatures is consistent with an increase in the molecular correlation time [12].

The shielding difference between $[CpNb(H)(CO)_3]^-$ (-1802 ppm) and

TABLE I

IR AND NMR DATA FOR $[CpM(CO)_3]^{2--}$ AND $[CpM(Y)(CO)_3]^{--}$ (M = Nb, V)

Complex	μ(CO)(cm ⁻¹)			Phase	δ(H) (ppm) [Δν _{1/2} (Hz)] ^a	$\delta(C_{s}H_{5}^{-})$ (ppin)	δ(M) ^h (ppm) [Δν.,.(Hz)] ^d	Ref.
Na (CaNA(CO) 10	1.160							
「じつううちょう」「おい	(JQ) SANC/ I	(191) (nc 191		THF				<i>q</i>
Na ₂ [CpV(CO) ₃]	1742s	1619s		HMPA		4 1 7		3 6
[Me4 N] 2[CpV(CO)1]	1742s	1630s		CH-CN		4		C . C
Cs ₂ [CpV(CO),]	1748	1645		Nuiol				5
[Et,N][CpNb(H)(CO),]	1900vs	1789vs(hr)		CH,CN	- 5.6 [360]	5.38	- 1807 [160]	x 7
				•		5 08		
[Et ₄ N][CpNb(H)(CO) ₃]	1888s	1780-1755vs		Nuiol				1
[Et { N][CpNb(D)(CO)]}	1899s	1887vs (br)		CD,CN			10011001-	9
[Et_N][CpV(H)(CO),]	1889s	1775vs (br)		CH,CN	-6311601		[net] 0001 -	. •
[P ₂ N][CpV(H)(CO) ₃]	1890	1780		CH,CN	– 6. l vhr	4 57		1 4
[P ₂ N][CpV(CH ₃)(CO) ₃]	1895	1855	1775(sh)	THF		4 43		r u
[CpV(Br)(CO) ₃] ⁻	1948	1855	1810	THF		4 8 2		<u>.</u>
[(CpV(CO) ₃) ₂ μ-H] ⁻	1857	1817		THF		4.67		. .
[Et N][CpV(SnPh,)(CO),]	1891s	1795s (br)		HMPA		1.071		n r
[Et_N][CpV(SnCl_J)(CO),]	1950s	1889m (sh)	1851vs	CH,CI,				r 0
" Half-width of the recommendation								

" Half-width of the resonance signal." M = V: relative to VOC(3, M = Nb; relative to NbOC(3, ⁶ Not isolated; see text for discussion and for additional bands.^d This work." Doublet ($^{1}J(V-H) = 20$ Hz); $\Delta v_{1/2}$ (^{1}H) = 60 Hz.

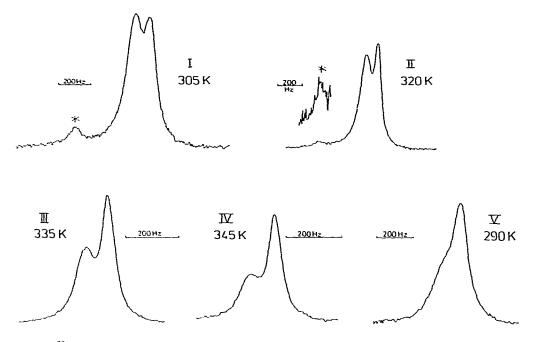


Fig. 1. ⁹³Nb NMR spectra of $[Et_4N][CpNb(X)(CO)_3]$ in CD₃CN (X = H: left signal, X = D: right signal), showing the substitution of H for D with increasing temperature (I to IV) and the situation after freezing-in (V). The signal indicated * (-1779 ppm at 305 K) is not assigned.

 $[CpNb(D)(CO)_3]^-$ (-1808 ppm), which can be regarded as an isotope effect upon ⁹³Nb shielding, is produced by (i) an increase of non-local diamagnetic contributions to the overall shielding [13], and (probably to a much greater extent) (ii) by the decrease of the population of excited vibronic states (decrease of the paramagnetic deshielding contribution [14,15]) on going from H to D. The greater shielding for the deuterium compound is thus an electronic and/or steric effect induced by the apparently more nucleophilic D⁻ (less electrophilic D⁺, see above) and the larger deuterium ligand, and compares to the isotope effect observed for CpW(X)(CO₃) [22].

Due to the greater line widths of the 93 Nb resonances compared to the 51 V resonances (as a result of the larger electric nuclear quadrupole moment of the former), ${}^{1}H{-}^{93}$ Nb coupling is not resolved in the 93 Nb spectra. The 1 H resonance for the H⁻ is, however, typically broadened by scalar ($I({}^{93}Nb) = 9/2$) and quadrupolar interaction with the niobium. The lower limit for the coupling constant ${}^{1}J({}^{1}H{-}^{93}$ Nb) as estimated from the line width (360 Hz) is ca. 36 Hz, and hence about twice that for ${}^{1}J({}^{1}H{-}^{51}V)$ in [CpV(H)(CO)₃]⁻ (20 Hz [4]); this is in accord with observations on the relation between ${}^{1}J({}^{19}F{-}M)$ and ${}^{1}J({}^{31}P{-}M)$ in fluoro and phosphine complexes of the respective metals [17–19]. From the observability of the H–Nb coupling it is also clear that fast inter- or bond-dissociative intramolecular exchange does not occur.

There are two ¹H resonances for the cyclopentadienyl protons, possibly indicating that the Cp-Nb axis is slightly off the axis of the $(Nb(X)(CO)_3)$ moiety, or that rotation of the cyclopentadienyl ring is restricted, and is in contrast with observa-

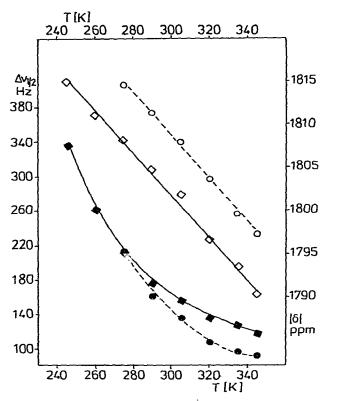


Fig. 2. Temperature vs. ⁹³Nb chemical shift (right ordinate, open symbols) and half widths of the resonance lines (left ordinate, full symbols) for $[CpNb(X)(CO)_3]^-$; X = H: squares, X = D: circles.

tions on CpNb(CO)₄, for which a recent X-ray analysis [16] reveals ideal tetragonal symmetry (3:4 geometry). There is only one ¹H resonance in the corresponding hydrido (and related) vanadium complexes (Table 1).

Another interesting feature is the difference in shielding, $\Delta\delta(M)$, between the hydrido complexes on the one hand and the parent carbonyl CpM(CO)₄ on the other. For M = V, the difference is 196 ppm for M = Nb 234 ppm (where the resonance for the hydrido complexes is shifted to higher field). The difference between the two $\Delta\delta(M)$ values, 38 ppm, is of the same order of magnitude as that observed in various phosphine derivatives of CpM(CO)₄ [21], and may be accounted for in terms of more predominant local diamagnetic shielding contributions in the Nb complexes or of structural differences between the hydrido complexes of vanadium and niobium, respectively, resulting in different paramagnetic contributions to the overall shielding.

Experimental

All operations were carried out in dry, oxygen-free solvents under N_2 . CpNb(CO)₄ was prepared according to Herrmann et al. [11,16].

IR spectra were run on a Perkin Elmer 337 spectrometer as ca. 0.01 M CX₃CN solutions (0.1 mm KBr cuvettes) or as Nujol mulls. ¹H NMR spectra were obtained

368

on a Bruker DP 80, ⁹³Nb NMR spectra on a Bruker WH 90 spectrometer at 22.00 MHz in 7.5 mm diameter vials relative to NbCl₅/CH₃CN. ⁹³Nb chemical shifts are quoted relative to NbOCl₃ ($\delta = 0$; δ [NbCl₅] = +450 ppm); absolute error at constant (± 1 deg) temperature is less than 1 ppm.

$[Et_{\downarrow}N][CpNb(H)(CO)_{3}]$

A solution of 1.27 g (4.7 mmol) CpNb(CO)₄ in 40 ml THF was added to 300 g of sodium amalgam (containing 1% sodium) and the mixture was stirred for 3 hours. During this time, the colour changed from red to dark brown and a powder (a mixture of $Na_{2}[CpNb(CO)_{1}]$ and $Na[CpNb(H)(CO)_{1}]$ separated. The powder was brought into suspension, and the suspension was poured off and evaporated to dryness (room temperature). The pasty brown residue was dissolved in 35 ml CH₃CN containing 0.78 g (4.7 mmol) of rigorously dried (high vacuum, 100°C) $[Et_4N]Cl$, and stirred for 15 min. The dark green solution which formed immediately was filtered (to remove most of the NaCl), and the residue on the filter extracted twice with 10 ml portions of 5% [Et₄N]Cl/CH₃CN. The combined filtrates were evaporated to dryness, the brown powder washed twice with 5 ml portions of O₂-free H_2O and freed from water by suction. For purification, the moist rawproduct was redissolved in 10 ml of CH₃CN. Treatment with 10 ml of n-heptane produced a fluid, red-brown oil. The supernatant heptane layer was discarded, and 20 ml THF were added with vigorous stirring to the remainder. The brown powder thus obtained was filtered off and dried under high vacuum (5 hours) to yield ochre $[Et_{1}N][CpNb(H)(CO)_{3}]$. Yield 1.0 g (57%). The complex is highly air-sensitive. slightly soluble in THF (red solution) and readily soluble in CH₃CN (green solution). Found: C, 45.2; H, 7.3; N, 3.8; Nb, 25.9. C₁₅H₂₆NNbO₃ (361.28) calcd.: C. 49.87; H. 7.25; N. 3.88; Nb, 25.72%. The repeatedly low carbon values may result from incomplete combustion of C due to the formation of niobium carbide.

Acknowledgement

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

- 1 E.O. Fischer and R.J.J. Schneider, Chem. Ber., 103 (1970) 3684.
- 2 E.O. Fischer and S. Vigoureux, Chem. Ber., 91 (1958) 2205.
- 3 J.E. Ellis, R.A. Faltynek and S.G. Hentges, J. Organometal. Chem., 120 (1976) 389.
- 4 U. Puttfarcken and D. Rehder, J. Organometal. Chem., 185 (1980) 219.
- 5 R.J. Kinney, W.D. Jones and R.G. Bergman, J. Amer. Chem. Soc., 100 (1978) 7902.
- 6 W.D. Jones, J.M. Huggins and R.G. Bergman, J. Amer. Chem. Soc., 103 (1981) 4415.
- 7 D. Rehder, Z. Naturforsch., 31b (1976) 273.
- 8 R.D. Fischer, Chem. Ber., 93 (1960) 165.
- 9 T. Kruck and W. Molls, Z. Anorg. Allgem. Chem., 420 (1976) 159.
- 10 W.D. Jones, Energy Res. Abstr., 5 (1980) Abstr. No. 32658.
- 11 W.A. Herrmann, H. Biersack, M.L. Ziegler, K. Weidenhammer, R. Siegel and D. Rehder, J. Amer. Chem. Soc., 103 (1981) 1692.
- 12 K. Paulsen, D. Rehder and D. Thoennes, Z. Naturforsch., 33a (1978) 834.
- 13 H. Batiz-Hernandez and R.A. Bernheim, Progr. NMR Spectrosc., 3 (1967) 63.
- 14 P.C. Lauterbur, J. Chem. Phys., 42 (1965) 799.

- 15 A. Loewenstein and M. Shporer, Mol. Phys., 9 (1965) 293.
- 16 W.A. Herrmann, W. Kalcher, H. Biersack, I. Bernal and M. Creswick, Chem. Ber., 114 (1981) 3558.
- 17 D. Rehder, H.-Ch. Bechthold and K. Paulsen, J. Magn. Reson., 40 (1980) 305.

......

- 18 J.V. Hatton, Y. Saito and W.G. Schneider, Canad. J. Chem., 43 (1965) 47.
- 19 J.A.S. Howell and K.C. Moss, J. Chem. Soc. A, (1971) 270.
- 20 H.-Ch. Bechthold and D. Rehder, J. Organometal. Chem., 233 (1982) 215.
- 21 H.-Ch. Bechthold and D. Rehder, J. Organometal. Chem., 206 (1981) 305.
- 22 H.C. McFarlane, W. McFarlane and D.S. Rycroft, J. Chem. Soc. Dalton Trans., (1976) 1616.